今天给大家分享一篇Facebook的关于如何缓解样本不均衡和难样本问题的文章,作者通过设计Focal loss来缓解这一问题,本文是在目标检测领域的文章,但是其中的Focal loss可以使用到NLP等领域,视频介绍了Cross Entropy loss和Focal loss的区别联系,欢迎大家讨论指正。
Pilgrammed X Fantastic Frontier Collab! | Pilgrammed
Mom gets kicked in the face
Respect hall - spa - Талассотерапия
Building a Team w/ WHOEVER I PULL from SACRED Shards!
Пусковое Устройство (бустер) Даджет KIT MT2021
MARVEL İlluminati Ekibinin Eksik Üyesinin Doctor Doom Olduğunu Açıkladı! Doctor Strange 2
Обзор баклажан в моей теплице.(Бибо, Карлсон, Король рынка, Эпик)
新娘丟扇被弟扔回去!「姐姐妳脾氣帶走好了」
[如何解决样本不均衡与难样本问题?]Focal Loss for Dense Object Detection
深度强化学习开山之作 Playing Atari with Deep Reinforcement Learning
[2021达摩院最新paper:对Focal loss改进]Asymmetric Loss For Multi-Label Classification
[如何缓解长尾分布问题?]Decoupling representation and classifier for long-tailed recognition
LoRA Tutorial : Low-Rank Adaptation of Large Language Models #lora
ResNet Strikes Back | 看看ResNet在2021有什么改进呢?(上) | 深度学习 | 人工智能
ResNet Strikes Back (下)| 看看ResNet在2021有什么改进呢?| 深度学习 | 人工智能
Microsoft Q3 financial report simple review
How to Start Coding When You're Overflowing with Ideas